Exploring the potential of Rosaceae nut-shells as a sustainable alternative to traditional aggregates in lightweight concrete

Authors

  • Veronica D'Eusanio Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
  • Biagio Anderlini Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
  • Andrea Marchetti Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
  • Stefano Pastorelli Centro Ricerche Litokol S.p.A., Rubiera, Reggio Emilia, Italy
  • Fabrizio Roncaglia Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
  • Alberto Ughetti Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy

Keywords:

sustainability, green building, recycle, food waste, lightweight concrete, lime concrete, fruit shells, coarse aggregate replacement

Abstract

This study investigates the potential application of peach shells as lightweight aggregates in the production of non-structural lightweight concrete. The recycling and reutilization of agri-food waste presents an opportunity to address the challenges associated with waste disposal and limit the exploitation of natural resources, contributing to sustainable development goals and combatting climate change. The peach shells were subjected to heat treatment at various temperatures (160, 200, and 240 °C) to reduce the hydrophilicity of the cellulose fraction, and their chemical and physical properties were examined in relation to the performance of lightweight concrete, in terms of density, compressive strength and thermal conductivity. Two binding mixtures, one with lime only (mixture “a”) and the other with both lime and cement (mixture “b”), were studied. Lime is considered a more sustainable material, but it may compromise the mechanical properties of LWC. The experimental results indicated that the prepared lightweight concrete specimens exhibited better performance as the roasting temperature increased, starting from 200 °C. Conversely, specimens prepared with peach shells roasted at 160 °C exhibited a decreased performance compared to those prepared with only air-dried peach shells. Samples prepared with the mixture “a” have better insulating properties and lower density, but lower mechanical resistance.

References

Sev, A. How Can the Construction Industry Contribute to Sustainable Development? A Conceptual Framework. Sustain. Dev. 2009, 17, 161–173, doi:10.1002/sd.373.

UNEP - United Nations Environment Programme 2020 Global Status Report for Buildings and Construction: Towards a Zeroemission, Efcient and Resilient Buildings and Construction Sector. Nairobi. Available at: Https://Globalabc.Org/News/Launched2020-Global-Status-Report-Buildings-and-Construction. Accessed 10 January 2023.

Benachio, G.L.F.; Freitas, M. do C.D.; Tavares, S.F. Circular Economy in the Construction Industry: A Systematic Literature Review. J. Clean. Prod. 2020, 260, 121046, doi:10.1016/j.jclepro.2020.121046.

Yeheyis, M.; Hewage, K.; Alam, M.S.; Eskicioglu, C.; Sadiq, R. An Overview of Construction and Demolition Waste Management in Canada: A Lifecycle Analysis Approach to Sustainability. Clean Technol. Environ. Policy 2013, 15, 81–91, doi:10.1007/s10098-012-0481-6.

Norouzi, N.; Soori, M. Energy, Environment, Water, and Land-Use Nexus Based Evaluation of the Global Green Building Standards. Water-Energy Nexus 2020, 3, 209–224, doi:10.1016/j.wen.2020.10.001.

Wu, H.J.; Yuan, Z.W.; Zhang, L.; Bi, J. Life Cycle Energy Consumption and CO2 Emission of an Office Building in China. Int. J. Life Cycle Assess. 2012, 17, 105–118, doi:10.1007/s11367-011-0342-2.

Burgan, B.A.; Sansom, M.R. Sustainable Steel Construction. J. Constr. Steel Res. 2006, 62, 1178–1183, doi:10.1016/j.jcsr.2006.06.029.

Fei, W.; Opoku, A.; Agyekum, K.; Oppon, J.A.; Ahmed, V.; Chen, C.; Lok, K.L. The Critical Role of the Construction Industry in Achieving the Sustainable Development Goals (SDGs): Delivering Projects for the Common Good. Sustainability 2021, 13, 9112, doi:10.3390/su13169112.

Santamouris, M.; Vasilakopoulou, K. Present and Future Energy Consumption of Buildings: Challenges and Opportunities towards Decarbonisation. E-Prime - Adv. Electr. Eng. Electron. Energy 2021, 1, 100002, doi:10.1016/j.prime.2021.100002.

Pheng, L.S.; Hou, L.S. The Economy and the Construction Industry. Constr. Qual. Econ. 2019, 21–54, doi:10.1007/978-981-13-5847-0_2.

United Nations Deparment of Economic and Social Affairs. World Population Prospects 2019.

Santamouris, M.; Feng, J. Recent Progress in Daytime Radiative Cooling: Is It the Air Conditioner of the Future? Buildings 2018, 8, 168, doi:10.3390/buildings8120168.

Bungau, C.C.; Bungau, T.; Prada, I.F.; Prada, M.F. Green Buildings as a Necessity for Sustainable Environment Development: Dilemmas and Challenges. Sustainability 2022, 14, 13121, doi:10.3390/su142013121.

Hafez, F.S.; Sa’di, B.; Safa-Gamal, M.; Taufiq-Yap, Y.H.; Alrifaey, M.; Seyedmahmoudian, M.; Stojcevski, A.; Horan, B.; Mekhilef, S. Energy Efficiency in Sustainable Buildings: A Systematic Review with Taxonomy, Challenges, Motivations, Methodological Aspects, Recommendations, and Pathways for Future Research. Energy Strategy Rev. 2023, 45, 101013, doi:10.1016/j.esr.2022.101013.

Zach, J.; Novák, V.; Peterková, J.; Bubeník, J.; Košir, M.; Božiček, D.; Krejza, Z. The Use of Advanced Environmentally Friendly Systems in the Insulation and Reconstruction of Buildings. Buildings 2023, 13, 404, doi:10.3390/buildings13020404.

Savio, L.; Pennacchio, R.; Patrucco, A.; Manni, V.; Bosia, D. Natural Fibre Insulation Materials: Use of Textile and Agri-Food Waste in a Circular Economy Perspective. Mater. Circ. Econ. 2022, 4, 6, doi:10.1007/s42824-021-00043-1.

Muhammad, A.; Thienel, K.-C.; Sposito, R. Suitability of Blending Rice Husk Ash and Calcined Clay for the Production of Self-Compacting Concrete: A Review. Materials 2021, 14, 6252, doi:10.3390/ma14216252.

Le, H.T.; Ludwig, H.-M. Effect of Rice Husk Ash and Other Mineral Admixtures on Properties of Self-Compacting High Performance Concrete. Mater. Des. 2016, 89, 156–166, doi:10.1016/j.matdes.2015.09.120.

Tavares, J.C.; Lucena, L.F.L.; Henriques, G.F.; Ferreira, R.L.S.; dos Anjos, M.A.S. Use of Banana Leaf Ash as Partial Replacement of Portland Cement in Eco-Friendly Concretes. Constr. Build. Mater. 2022, 346, 128467, doi:10.1016/j.conbuildmat.2022.128467.

Souza, A.M. de; Franco de Carvalho, J.M.; Santos, C.F.R.; Ferreira, F.A.; Pedroti, L.G.; Peixoto, R.A.F. On the Strategies to Improve the Eco-Efficiency of Self-Compacting Concrete Using Industrial Waste: An Analytical Review. Constr. Build. Mater. 2022, 347, 128634, doi:10.1016/j.conbuildmat.2022.128634.

Mannan, M.A.; Ganapathy, C. Concrete from an Agricultural Waste-Oil Palm Shell (OPS). Build. Environ. 2004, 39, 441–448, doi:10.1016/j.buildenv.2003.10.007.

Pinto, J.; Vieira, B.; Pereira, H.; Jacinto, C.; Vilela, P.; Paiva, A.; Pereira, S.; Cunha, V.M.C.F.; Varum, H. Corn Cob Lightweight Concrete for Non-Structural Applications. Constr. Build. Mater. 2012, 34, 346–351, doi:10.1016/j.conbuildmat.2012.02.043.

Zhang, Z.; Provis, J.L.; Reid, A.; Wang, H. Geopolymer Foam Concrete: An Emerging Material for Sustainable Construction. Constr. Build. Mater. 2014, 56, 113–127, doi:10.1016/j.conbuildmat.2014.01.081.

Mo, K.H.; Alengaram, U.J.; Jumaat, M.Z. Bond Properties of Lightweight Concrete – A Review. Constr. Build. Mater. 2016, 112, 478–496, doi:10.1016/j.conbuildmat.2016.02.125.

Thienel, K.-C.; Haller, T.; Beuntner, N. Lightweight Concrete—From Basics to Innovations. Materials 2020, 13, 1120, doi:10.3390/ma13051120.

Yu, Q.L.; Spiesz, P.; Brouwers, H.J.H. Ultra-Lightweight Concrete: Conceptual Design and Performance Evaluation. Cem. Concr. Compos. 2015, 61, 18–28, doi:10.1016/j.cemconcomp.2015.04.012.

Rodriguez, C.E.; Bustamante, C.A.; Budde, C.O.; Müller, G.L.; Drincovich, M.F.; Lara, M.V. Peach Fruit Development: A Comparative Proteomic Study Between Endocarp and Mesocarp at Very Early Stages Underpins the Main Differential Biochemical Processes Between These Tissues. Front. Plant Sci. 2019, 10, 715, doi:10.3389/fpls.2019.00715.

Pelentir, N.; Block, J.M.; Monteiro Fritz, A.R.; Reginatto, V.; Amante, E.R. Production and Chemical Characterization of Peach (Prunus Persica) Kernel Flour: Characterization of Peach Kernel Flour. J. Food Process Eng. 2011, 34, 1253–1265, doi:10.1111/j.1745-4530.2009.00519.x.

Plazzotta, S.; Ibarz, R.; Manzocco, L.; Martín-Belloso, O. Optimizing the Antioxidant Biocompound Recovery from Peach Waste Extraction Assisted by Ultrasounds or Microwaves. Ultrason. Sonochem. 2020, 63, 104954, doi:10.1016/j.ultsonch.2019.104954.

Wechsler, A.; Molina, J.; Cayumil, R.; Núñez Decap, M.; Ballerini-Arroyo, A. Some Properties of Composite Panels Manufactured from Peach (Prunus Persica) Pits and Polypropylene. Compos. Part B Eng. 2019, 175, 107152, doi:10.1016/j.compositesb.2019.107152.

Kambis, A.D.; Levine, J.S. Biomass Burning and the Production of Carbon Dioxide: Numerical Study. In Biomass Burning and Global Change Volume 1: Remote Sensing, Modeling and Inventory Development, and Biomass Burning in Africa; MIT Press, Cambridge, MA, 1996.

Duc, P.A.; Dharanipriya, P.; Velmurugan, B.K.; Shanmugavadivu, M. Groundnut Shell -a Beneficial Bio-Waste. Biocatal. Agric. Biotechnol. 2019, 20, 101206, doi:10.1016/j.bcab.2019.101206.

Zheng, W.; Phoungthong, K.; Lü, F.; Shao, L.-M.; He, P.-J. Evaluation of a Classification Method for Biodegradable Solid Wastes Using Anaerobic Degradation Parameters. Waste Manag. 2013, 33, 2632–2640, doi:10.1016/j.wasman.2013.08.015.

Wu, F.; Liu, C.; Zhang, L.; Lu, Y.; Ma, Y. Comparative Study of Carbonized Peach Shell and Carbonized Apricot Shell to Improve the Performance of Lightweight Concrete. Constr. Build. Mater. 2018, 188, 758–771, doi:10.1016/j.conbuildmat.2018.08.094.

UN General Assembly Transforming Our World : The 2030 Agenda for Sustainable Development; A/RES/70/1.; 2015;

European Committee for concrete (CEB); International Federation for Prestressing (FIP) Manual of Design and Technology, Lightweight Aggregate Concrete 1977.

Sala, E.; Zanotti, C.; Passoni, C.; Marini, A. Lightweight Natural Lime Composites for Rehabilitation of Historical Heritage. Constr. Build. Mater. 2016, 125, 81–93, doi:10.1016/j.conbuildmat.2016.08.033.

Domagała, L. The Effect of Lightweight Aggregate Water Absorption on the Reduction of Water-Cement Ratio in Fresh Concrete. Procedia Eng. 2015, 108, 206–213, doi:10.1016/j.proeng.2015.06.139.

Bekhta, P.; Niemz, P. Effect of High Temperature on the Change in Color, Dimensional Stability and Mechanical Properties of Spruce Wood. 2003, 57, 539–546, doi:10.1515/HF.2003.080.

Li, X.J.; Cai, Z.Y.; Mou, Q.Y.; Wu, Y.Q.; Liu, Y. Effects of Heat Treatment on Some Physical Properties of Douglas Fir (Pseudotsuga Menziesii) Wood. Adv. Mater. Res. 2011, 197–198, 90–95, doi:10.4028/www.scientific.net/AMR.197-198.90.

Carran, D.; Hughes, J.; Leslie, A.; Kennedy, C. A Short History of the Use of Lime as a Building Material Beyond Europe and North America. Int. J. Archit. Herit. 2012, 6, 117–146, doi:10.1080/15583058.2010.511694.

Elert, K.; Rodriguez-Navarro, C.; Pardo, E.S.; Hansen, E.; Cazalla, O. Lime Mortars for the Conservation of Historic Buildings. Stud. Conserv. 2002, 47, 62–75, doi:10.1179/sic.2002.47.1.62.

Boynton, R.S. Chemistry and Technology of Lime and Limestone; 2nd ed.; John Wiley & Sons, Inc., New York, 1980;

Saberian, M.; Jahandari, S.; Li, J.; Zivari, F. Effect of Curing, Capillary Action, and Groundwater Level Increment on Geotechnical Properties of Lime Concrete: Experimental and Prediction Studies. J. Rock Mech. Geotech. Eng. 2017, 9, 638–647, doi:10.1016/j.jrmge.2017.01.004.

Bevan, R.; Woolley, T. Hemp Lime Construction 2008.

Maletti, L.; D’Eusanio, V.; Durante, C.; Marchetti, A.; Tassi, L. VOCs Analysis of Three Different Cultivars of Watermelon (Citrullus Lanatus L.) Whole Dietary Fiber. Molecules 2022, 27, 8747, doi:10.3390/molecules27248747.

Idrotermica Imolese s.r.l., Via Andrea Marzari, 22, 40026 Imola BO, Italy. Http://Www.Idrotermicaimolese.It.

Palomar, I.; Barluenga, G.; Puentes, J. Lime–Cement Mortars for Coating with Improved Thermal and Acoustic Performance. Constr. Build. Mater. 2015, 75, 306–314, doi:10.1016/j.conbuildmat.2014.11.012.

Silva, L.M.; Ribeiro, R.A.; Labrincha, J.A.; Ferreira, V.M. Role of Lightweight Fillers on the Properties of a Mixed-Binder Mortar. Cem. Concr. Compos. 2010, 32, 19–24, doi:10.1016/j.cemconcomp.2009.07.003.

Lo, T.Y.; Tang, W.C.; Cui, H.Z. The Effects of Aggregate Properties on Lightweight Concrete. Build. Environ. 2007, 42, 3025–3029, doi:10.1016/j.buildenv.2005.06.031.

Hill, C.; Altgen, M.; Rautkari, L. Thermal Modification of Wood—a Review: Chemical Changes and Hygroscopicity. J. Mater. Sci. 2021, 56, 6581–6614, doi:10.1007/s10853-020-05722-z.

D’Eusanio, V.; Malferrari, D.; Marchetti, A.; Roncaglia, F.; Tassi, L. Waste By-Product of Grape Seed Oil Production: Chemical Characterization for Use as a Food and Feed Supplement. Life 2023, 13, 326, doi:10.3390/life13020326.

D’Eusanio, V.; Genua, F.; Marchetti, A.; Morelli, L.; Tassi, L. Characterization of Some Stilbenoids Extracted from Two Cultivars of Lambrusco—Vitis Vinifera Species: An Opportunity to Valorize Pruning Canes for a More Sustainable Viticulture. Molecules 2023, 28, 4074, doi:10.3390/molecules28104074.

Mohamed, A.R.; Mohammadi, M.; Darzi, G.N. Preparation of Carbon Molecular Sieve from Lignocellulosic Biomass: A Review. Renew. Sustain. Energy Rev. 2010, 14, 1591–1599, doi:10.1016/j.rser.2010.01.024.

Bajpai, P. Wood and Fiber Fundamentals. In Biermann’s Handbook of Pulp and Paper; Elsevier, 2018.

Watkins, D.; Nuruddin, Md.; Hosur, M.; Tcherbi-Narteh, A.; Jeelani, S. Extraction and Characterization of Lignin from Different Biomass Resources. J. Mater. Res. Technol. 2015, 4, 26–32, doi:10.1016/j.jmrt.2014.10.009.

Suhas; Carrott, P.J.M.; Ribeiro Carrott, M.M.L. Lignin – from Natural Adsorbent to Activated Carbon: A Review. Bioresour. Technol. 2007, 98, 2301–2312, doi:10.1016/j.biortech.2006.08.008.

ACI Committee 213 Guide for Structural Lightwieght-Aggregate Concrete.

Chaipanich, A.; Chindaprasirt, P. The Properties and Durability of Autoclaved Aerated Concrete Masonry Blocks. In Eco-Efficient Masonry Bricks and Blocks; Elsevier, 2015; pp. 215–230 ISBN 978-1-78242-305-8.

Bogas, J.A.; Cunha, D. Non-Structural Lightweight Concrete with Volcanic Scoria Aggregates for Lightweight Fill in Building’s Floors. Constr. Build. Mater. 2017, 135, 151–163, doi:10.1016/j.conbuildmat.2016.12.213.

Alengaram, U.J.; Muhit, B.A.A.; Jumaat, M.Z. bin Utilization of Oil Palm Kernel Shell as Lightweight Aggregate in Concrete – A Review. Constr. Build. Mater. 2013, 38, 161–172, doi:10.1016/j.conbuildmat.2012.08.026.

Mosleh Salman, M.; A. Muttar, A. The Mechanical Properties of Lime Concrete. J Eng Sustain Dev 2017, 21, 180–191.

Adefemi, A.; Nensok, M.; Kaase, E.T.; Wuna, I.A. Exploratory Study of Date Seed as Coarse Aggregate in Concrete Production. Civ. Env. Res 2013, 3, 85–92.

Wu, F.; Liu, C.; Sun, W.; Ma, Y.; Zhang, L. Effect of Peach Shell as Lightweight Aggregate on Mechanics and Creep Properties of Concrete. Eur. J. Environ. Civ. Eng. 2020, 24, 2534–2552, doi:10.1080/19648189.2018.1515667.

Molugaram, K.; Shanker, J.S.; Ramesh, A. A Study on Influence of Shape of Aggregate on Strength and Quality of Concrete for Buildings and Pavements. Adv. Mater. Res. 2014, 941–944, 776–779, doi:10.4028/www.scientific.net/AMR.941-944.776.

Mohd Sari, K.A.; Mohammed Sani, A.R. Applications of Foamed Lightweight Concrete. MATEC Web Conf. 2017, 97, 01097, doi:10.1051/matecconf/20179701097.

Lo, T.Y.; Cui, H.Z. Effect of Porous Lightweight Aggregate on Strength of Concrete. Mater. Lett. 2004, 58, 916–919, doi:10.1016/j.matlet.2003.07.036.

Poon, C.S.; Shui, Z.H.; Lam, L. Effect of Microstructure of ITZ on Compressive Strength of Concrete Prepared with Recycled Aggregates. Constr. Build. Mater. 2004, 18, 461–468, doi:10.1016/j.conbuildmat.2004.03.005.

Jhatial, A.A.; Goh, W.I.; Mohamad, N.; Rind, T.A.; Sandhu, A.R. Development of Thermal Insulating Lightweight Foamed Concrete Reinforced with Polypropylene Fibres. Arab. J. Sci. Eng. 2020, 45, 4067–4076, doi:10.1007/s13369-020-04382-0.

Lee, Y.H.; Chua, N.; Amran, M.; Yong Lee, Y.; Hong Kueh, A.B.; Fediuk, R.; Vatin, N.; Vasilev, Y. Thermal Performance of Structural Lightweight Concrete Composites for Potential Energy Saving. Crystals 2021, 11, 461, doi:10.3390/cryst11050461.

Asadi, I.; Shafigh, P.; Abu Hassan, Z.F.B.; Mahyuddin, N.B. Thermal Conductivity of Concrete – A Review. J. Build. Eng. 2018, 20, 81–93, doi:10.1016/j.jobe.2018.07.002.

dos Santos, W.N. Effect of Moisture and Porosity on the Thermal Properties of a Conventional Refractory Concrete. J. Eur. Ceram. Soc. 2003, 23, 745–755, doi:10.1016/S0955-2219(02)00158-9.

Krakowiak, K.J.; Nannapaneni, R.G.; Moshiri, A.; Phatak, T.; Stefaniuk, D.; Sadowski, L.; Abdolhosseini Qomi, M.J. Engineering of High Specific Strength and Low Thermal Conductivity Cementitious Composites with Hollow Glass Microspheres for High-Temperature High-Pressure Applications. Cem. Concr. Compos. 2020, 108, 103514, doi:10.1016/j.cemconcomp.2020.103514.

Wu, Y.; Wang, J.-Y.; Monteiro, P.J.M.; Zhang, M.-H. Development of Ultra-Lightweight Cement Composites with Low Thermal Conductivity and High Specific Strength for Energy Efficient Buildings. Constr. Build. Mater. 2015, 87, 100–112, doi:10.1016/j.conbuildmat.2015.04.004.

Downloads

Published

2023-07-05